AnnouncingFAO Manual on Aquaponics available now in resources!
FeaturesPricingSupportSign In

Chapter 9 Nutrient Cycling in Aquaponics Systems

5 months ago

13 min read

Mathilde Eck, Oliver Körner, and M. Haïssam Jijakli

Abstract In aquaponics, nutrients originate mainly from the fish feed and water inputs in the system. A substantial part of the feed is ingested by the fish and either used for growth and metabolism or excreted as soluble and solid faeces, while the rest of any uneaten feed decays in the tanks. While the soluble excretions are readily available for the plants, the solid faeces need to be mineralised by microorganisms in order for its nutrient content to be available for plant uptake. It is thus more challenging to control the available nutrient concentrations in aquaponics than in hydroponics. Furthermore, many factors, amongst others pH, temperature and light intensity, influence the nutrient availability and plant uptake. Until today, most studies have focused on the nitrogen and phosphorus cycles. However, to ensure good crop yields, it is necessary to provide the plants with sufficient levels of all key nutrients. It is therefore essential to better understand and control nutrient cycles in aquaponics.

Keywords Aquaponics · Nutrient cycling · Solubilisation · Microbiological processes


M. Eck · M. H. Jijakli

Integrated and Urban Plant Pathology Laboratory, Université de Liège, Agro-Bio Tech, Gembloux,, Belgium

O. Körner

Leibniz-Institute of Vegetable and Ornamental Crops (IGZ), Grossbeeren, Germany

© The Author(s) 2019 231

S. Goddek et al. (eds.), Aquaponics Food Production Systems, https://doi.org/10.1007/978-3-030-15943-6_9


References

Bartelme RP, Oyserman BO, Blom JE, Sepulveda-Villet OJ, Newton RJ (2018) Stripping away the soil: plant growth promoting microbiology opportunities in aquaponics. Front Microbiol 9(8). https://doi.org/10.3389/fmicb.2018.00008

Bittsanszky A, Uzinger N, Gyulai G, Mathis A, Junge R, Villarroel M, Kotzen B, Komives T (2016) Nutrient supply of plants in aquaponic systems. Ecocycles 2(1720). https://doi.org/10.19040/ ecocycles.v2i2.57

Blancheton JP, Attramadal KJK, Michaud L, d'Orbcastel ER, Vadstein O (2013) Insight into bacterial population in aquaculture systems and its implication. Aquac Eng 53:30—39

Boyd CE (2015) Overview of aquaculture feeds: global impacts of ingredient use. Feed Feed Pract Aquac 3—25. https://doi.org/10.1016/B978-0-08-100506-4.00001-5

Bugbee B (2004) Nutrient management in recirculating hydroponic culture. Acta Hortic 648:99—112. https://doi.org/10.17660/ActaHortic.2004.648.12

Buzby KM, Lin LS (2014) Scaling aquaponic systems: balancing plant uptake with fish output. Aquac Eng 63:39—44. https://doi.org/10.1016/j.aquaeng.2014.09.002

Carsiotis M, Khanna S (1989) Genetic engineering of microbial nitrification. United States Environmental Protection Agency, Risk Reduction Engineering Laboratory, Cincinnati

Cerozi BS, Fitzsimmons K (2017) Phosphorus dynamics modeling and mass balance in an aquaponics system. Agric Syst 153:94—100. https://doi.org/10.1016/j.agsy.2017.01.020

Daims H, Lebedeva EV, Pjevac P, Han P, Herbold C, Albertsen M, Jehmlich N, Palatinszky M, Vierheilig J, Bulaev A, Kirkegaard RH, Von Bergen M, Rattei T, Bendinger B, Nielsen H, Wagner M (2015) Complete nitrification by Nitrospira bacteria. Nature 528:504. https://doi.org/ 10.1038/nature16461

Davidson J, Good C, Barrows FT, Welsh C, Kenney PB, Summerfelt ST (2013) Comparing the effects of feeding a grain- or a fish meal-based diet on water quality, waste production, and rainbow trout Oncorhynchus mykiss performance within low exchange water recirculating aquaculture systems. Aquac Eng 52:45—57. https://doi.org/10.1016/J.AQUAENG.2012.08.001

Delaide B(2017) A study on the mineral elements available in aquaponics, their impact on lettuce productivity and the potential improvement of their availability. PhD thesis. Gembloux AgroBio Tech, University of Liege

Delaide B, Goddek S, Gott J, Soyeurt H, Haissam Jijakli M, Lalman J, Junge R (2016) Lettuce (Lactuca sativa L. var. Sucrine) growth performance in complemented aquaponic solution outperforms hydroponics. Water 8. https://doi.org/10.3390/w8100467

Delaide B, Delhaye G, Dermience M, Gott J, Soyeurt H, Jijakli MH (2017) Plant and fish production performance, nutrient mass balances, energy and water use of the PAFF box, a small-scale aquaponic system. Aquac Eng 78:130—139. https://doi.org/10.1016/j.aquaeng.2017. 06.002

Fitzgerald CM, Camejo P, Oshlag JZ, Noguera DR (2015) Ammonia-oxidizing microbial communities in reactors with efficient nitrification at low-dissolved oxygen. Water Res 70:38—51. https://doi.org/10.1016/J.WATRES.2014.11.041

Geay F, Ferraresso S, Zambonino-Infante JL, Bargelloni L, Quentel C, Vandeputte M, Kaushik S, Cahu CL, Mazurais D (2011) Effects of the total replacement of fish-based diet with plant-based diet on the hepatic transcriptome of two European sea bass (Dicentrarchus labrax) halfsibfamilies showing different growth rates with the plant-based diet. BMC Genomics 12:522. https://doi.org/10.1186/1471-2164-12-522

Gentile ME, Lynn Nyman J, Criddle CS (2007) Correlation of patterns of denitrification instability in replicated bioreactor communities with shifts in the relative abundance and the denitrification patterns of specific populations. ISME J 1:714—728. https://doi.org/10.1038/ismej.2007.87

Goddek S, Keesman KJ (2018) The necessity of desalination technology for designing and sizing multi-loop aquaponics systems. Desalination 428:76—85. https://doi.org/10.1016/J.DESAL. 2017.11.024

Goddek S, Körner O (2019) A fully integrated simulation model of multi-loop aquaponics: a case study for system sizing in different environments. Agric Syst 171:143

Goddek S, Delaide B, Mankasingh U, Ragnarsdottir KV, Jijakli H, Thorarinsdottir R (2015) Challenges of sustainable and commercial aquaponics. Sustainability 7:4199—4224. https:// doi.org/10.3390/su7044199

Goddek S, Schmautz Z, Scott B, Delaide B, Keesman K, Wuertz S, Junge R (2016) The effect of anaerobic and aerobic fish sludge supernatant on hydroponic lettuce. Agronomy 6:37. https:// doi.org/10.3390/agronomy6020037

Goddek S, Delaide BPL, Joyce A, Wuertz S, Jijakli MH, Gross A, Eding EH, Bläser I, Reuter M, Keizer LCP et al (2018) Nutrient mineralization and organic matter reduction performance of RAS-based sludge in sequential UASB-EGSB reactors. Aquac Eng 83:10—19

Graber A, Junge R (2009) Aquaponic systems: nutrient recycling from fish wastewater by vegetable production. Desalination 246:147—156. https://doi.org/10.1016/j.desal.2008.03.048

Guangzhi G (2001) Mass balance and water quality in aquaculture tanks. The United Nations University, Fisheries Training Programme, Reyjavik

Hu B, Shen L, Xu X, Zheng P (2011) Anaerobic ammonium oxidation (anammox) in different natural ecosystems. Biochem Soc Trans 39:1811—1816. https://doi.org/10.1042/BST20110711

Hu Z, Lee JW, Chandran K, Kim S, Brotto AC, Khanal SK (2015) Effect of plant species on nitrogen recovery in aquaponics. Bioresources 188:92—98. https://doi.org/10.1016/j.biortech. 2015.01.013

Hua K, Bureau DP (2012) Exploring the possibility of quantifying the effects of plant protein ingredients in fish feeds using meta-analysis and nutritional model simulation-based approaches. Aquaculture 356—357:284—301. https://doi.org/10.1016/J.AQUACULTURE. 2012.05.003

Jorquera M, Martínez O, Maruyama F, Marschner P, de la Luz Mora M (2008) Current and future biotechnological applications of bacterial Phytases and phytase-producing Bacteria. Microbes Environ 23:182—191. https://doi.org/10.1264/jsme2.23.182

Körner O, Aaslyng JM, Andreassen AU, Holst N (2007) Modelling microclimate for dynamic greenhouse climate control. Hortscience 42:272—279

Körner O, Gutzmann E, Kledal PR (2017) A dynamic model simulating the symbiotic effects in aquaponic systems. Acta Hortic 1170:309—316

Kuhn DD, Drahos DD, Marsh L, Flick GJ (2010) Evaluation of nitrifying bacteria product to improve nitrification efficacy in recirculating aquaculture systems. Aquac Eng 43:78—82. https:// doi.org/10.1016/J.AQUAENG.2010.07.001

Le Corre KS, Valsami-Jones E, Hobbs P, Parsons SA (2005) Impact of calcium on struvite crystal size, shape and purity. J Cryst Growth 283:514—522. https://doi.org/10.1016/J.JCRYSGRO. 2005.06.012

Lennard WA, Leonard BV (2006) A comparison of three different hydroponic sub-systems (gravel bed, floating and nutrient film technique) in an Aquaponic test system. Aquac Int 14:539—550. https://doi.org/10.1007/s10499-006-9053-2

Letelier-Gordo CO, Dalsgaard J, Suhr KI, Ekmann KS, Pedersen PB (2015) Reducing the dietary protein:energy (P:E) ratio changes solubilization and fermentation of rainbow trout (Oncorhynchus mykiss) faeces. Aquac Eng 66:22—29

Licamele J (2009) Biomass production and nutrient dynamics in an aquaponics system. PhD thesis. Department of Agriculture and biosystems engineering, University of Arizona

Losordo TM, Masser MP, Rakocy J (1998) Recirculating aquaculture tank production systems: an overview of critical considerations. SRAC No. 451, pp 18—31

Madigan MT, Martinko JM (2007) Biologie des micro-organismes, 11th edn. Pearson Education France, Paris

Meriac A, Eding EH, Schrama J, Kamstra A, Verreth JAJ (2014) Dietary carbohydrate composition can change waste production and biofilter load in recirculating aquaculture systems. Aquaculture 420—421:254—261. https://doi.org/10.1016/j.aquaculture.2013.11.018

Michaud L, Blancheton JP, Bruni V, Piedrahita R (2006) Effect of particulate organic carbon on heterotrophic bacterial populations and nitrification efficiency in biological filters. Aquac Eng 34:224—233. https://doi.org/10.1016/j.aquaeng.2005.07.005

Munguia-Fragozo P, Alatorre-Jacome O, Rico-Garcia E, Torres-Pacheco I, Cruz-Hernandez A, Ocampo-Velazquez RV, Garcia-Trejo JF, Guevara-Gonzalez RG (2015) Perspective for aquaponic systems: "omic" technologies for microbial community analysis. Biomed Res Int 2015:1. https://doi.org/10.1155/2015/480386

Neto MR, Ostrensky A (2015) Nutrient load estimation in the waste of Nile Tilapia Oreochromis niloticus (L.) reared in cages in tropical climate conditions. Aquac Res 46:1309—1322. https:// doi.org/10.1111/are.12280

Orozco-Mosque MC, Rocha-Granados MC, Glick BR, Santoyo G (2018) Microbiome engineering to improve biocontrol and plant growth-promoting mechanism. Microbiol Res. In Press

Palm HW, Knaus U, Appelbaum S, Goddek S, Strauch SM, Vermeulen T, Haїssam Jijakli M, Kotzen B (2018) Towards commercial aquaponics: a review of systems, designs, scales and nomenclature. Aquac Int 26:813—842

Prabhu AS, Fageria NK, Berni RF, Rodrigues FA (2007) Phosphorus and plant disease. In: Datnoff LE, Elmer WH, Huber DM (eds) Mineral nutrition and plant disease. The American Phytopathological Society, St. Paul, pp 45—55

Rafiee G, Saad CR (2005) Nutrient cycle and sludge production during different stages of red Tilapia (Oreochromis sp.) growth in a recirculating aquaculture system. Aquaculture 244:109—118. https://doi.org/10.1016/J.AQUACULTURE.2004.10.029

Rakocy JE, Shultz RC, Bailey DS, Thoman ES (2004) Aquaponic production of Tilapia and basil: comparing a batch and staggered cropping system. Acta Hortic 648:63—69. https://doi.org/10. 17660/ActaHortic.2004.648.8

Rakocy JE, Masser MP, Losordo TM (2006) Recirculating aquaculture tank production systems: aquaponics- integrating fish and plant culture. SRAC Publ South Reg Aquac Cent 16. https:// doi.org/454

Randall D, Tsui TK (2002) Ammonia toxicity in fish. Mar Pollut Bull 45:17—23. https://doi.org/10. 1016/S0025-326X(02)00227-8

Resh HM (2013) Hydroponic food production: a definitive guidebook for the advanced home gardener and the commercial hydroponic grower, 7th edn. CRC Press, Boca Raton

Roosta HR, Hamidpour M (2011) Effects of foliar application of some macro- and micro-nutrients on tomato plants in aquaponic and hydroponic systems. Sci Hortic 129:396—402. https://doi.org/ 10.1016/J.SCIENTA.2011.04.006

Roosta HR, Hamidpour M (2013) Mineral nutrient content of tomato plants in Aquaponic and hydroponic systems: effect of foliar application of some macro- and micro-nutrients. J Plant Nutr 36:2070—2083. https://doi.org/10.1080/01904167.2013.821707

Ru D, Liu J, Hu Z, Zou Y, Jiang L, Cheng X, Lv Z (2017) Improvement of aquaponic performance through micro- and macro-nutrient addition. Environ Sci Pollut Res 24:16328—16335. https:// doi.org/10.1007/s11356-017-9273-1

Rurangwa E, Verdegem MCJ (2013) Microorganisms in recirculating aquaculture systems and their management. Rev Aquac 7:117—130. https://doi.org/10.1111/raq.12057

Schmautz Z, Graber A, Mathis A, Griessler Bulc T, Junge R (2015) Tomato production in aquaponic system: mass balance and nutrient recycling (abstract)

Schmautz Z, Loeu F, Liebisch F, Graber A, Mathis A, Bulc TG, Junge R (2016) Tomato productivity and quality in aquaponics: comparison of three hydroponic methods. Water 8:1—22. https://doi.org/10.3390/w8110533

Schmautz Z, Graber A, Jaenicke S, Goesmann A, Junge R, Smits THM (2017) Microbial diversity in different compartments of an aquaponics system. Arch Microbiol 199:613. https://doi.org/10. 1007/s00203-016-1334-1

Schneider O, Sereti V, Eding EH, Verreth JAJ (2004) Analysis of nutrient flows in integrated intensive aquaculture systems. Aquac Eng 32:379—401. https://doi.org/10.1016/j.aquaeng.2004. 09.001

Seawright DE, Stickney RR, Walker RB (1998) Nutrient dynamics in integrated aquaculture— hydroponics systems. Aquaculture 160:215—237

Shoda M (2014) Heterotrophic nitrification and aerobic denitrification by Alcaligenes faecalis. J Biosci Bioeng 117:737—741. https://doi.org/10.5772/68052

Somerville C, Stankus A, Lovatelli A (2014) Small-scale aquaponic food production. Integrated fish and plant farming. Food and Agriculture Organisation of the United Nations, Rome

Sonneveld C, Voogt W (2009) Plant nutrition of greenhouse crops. Springer, Dordrecht/ Heidelberg/London/New York

Sugita H, Nakamura H, Shimada T (2005) Microbial communities associated with filter materials in recirculating aquaculture systems of freshwater fish. Aquaculture 243:403. https://doi.org/10.1016/j.aquaculture.2004.09.028

Suhl J, Dannehl D, Kloas W, Baganz D, Jobs S, Scheibe G, Schmidt U (2016) Advanced aquaponics: evaluation of intensive tomato production in aquaponics vs. conventional hydroponics. Agric Water Manag 178:335—344. https://doi.org/10.1016/j.agwat.2016.10.013

Tacon AGJ, Metian M (2008) Global overview on the use of fish meal and fish oil in industrially compounded aquafeeds: trends and future prospects. Aquaculture 285:146—158. https://doi.org/10.1016/j.aquaculture.2008.08.015

Timmons MB, Ebeling JM (2013) Recirculating aquaculture. Ithaca Publishing, New York

Turcios AE, Papenbrock J (2014) Sustainable treatment of aquaculture effluents—-what can we learn from the past for the future? Sustainability 6:836—856. https://doi.org/10.3390/su6020836 van Lier JB, Mahmoud N, Zeeman G (2008) In: Henze M, van Loosdrecht MCM, Ekama GA, Brdjanovic D (eds) Anaerobic wastewater treatment, in: biological wastewater treatment: principles, modelling and design. IWA Publishing, London. ISBN: 9781843391883

van Rijn J (2013) Waste treatment in recirculating aquaculture systems. Aquac Eng 53:49—56. https://doi.org/10.1016/J.AQUAENG.2012.11.010

Wongkiew S, Hu Z, Chandran K, Lee JW, Khanal SK (2017) Nitrogen transformations in aquaponic systems: a review. Aquac Eng 76:9—19. https://doi.org/10.1016/j.aquaeng.2017.01. 004

Xu G, Fan X, Miller AJ (2012) Plant nitrogen assimilation and use efficiency. Annu Rev Plant Biol 63:153—182. https://doi.org/10.1146/annurev-arplant-042811-105532

Yildiz HY, Robaina L, Pirhonen J, Mente E, Domínguez D, Parisi G (2017) Fish welfare in Aquaponic systems: its relation to water quality with an emphasis on feed and Faeces—-a review. Water 9. https://doi.org/10.3390/w9010013

Yogev U, Barnes A, Gross A (2016) Nutrients and energy balance analysis for a conceptual model of a three loops off grid, aquaponics. Water 8. https://doi.org/10.3390/w8120589

Zekki H, Gauthier L, Gosselin A (1996) Growth, productivity, and mineral composition of hydroponically cultivated greenhouse tomatoes, with or without nutrient solution recycling. J Am Soc Hortic Sci 121:1082—1088

Zou Y, Hu Z, Zhang J, Xie H, Guimbaud C, Fang Y (2016) Effects of pH on nitrogen transformations in media-based aquaponics. Bioresour Technol 210:81—87. https://doi.org/10.1016/ J.BIORTECH.2015.12.079

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

image-20200929112107029