AnnouncingFAO Manual on Aquaponics available now in resources!
FeaturesPricingSupportSign In

Chapter 7 Coupled Aquaponics Systems

4 months ago

19 min read

Harry W. Palm, Ulrich Knaus, Samuel Appelbaum, Sebastian M. Strauch, and Benz Kotzen

Abstract Coupled aquaponics is the archetype form of aquaponics. The technical complexity increases with the scale of production and required water treatment, e.g. filtration, UV light for microbial control, automatic controlled feeding, computerization and biosecurity. Upscaling is realized through multiunit systems that allow staggered fish production, parallel cultivation of different plants and application of several hydroponic subsystems. The main task of coupled aquaponics is the purification of aquaculture process water through integration of plants which add economic benefits when selecting suitable species like herbs, medicinal plants or ornamentals. Thus, coupled aquaponics with closed water recirculation systems has a particular role to fulfil.

Under fully closed recirculation of nutrient enriched water, the symbiotic community of fish, plants and bacteria can result in higher yields compared with standalone fish production and/or plant cultivation. Fish and plant choices are highly diverse and only limited by water quality parameters, strongly influenced by fish feed, the plant cultivation area and component ratios that are often not ideal. Carps, Tilapia and catfish are most commonly used, though more sensitive fish species and crayfish have been applied. Polyponics and additional fertilizers are methods to improve plant quality in the case of growth deficiencies, boosting plant production and increasing total yield.

The main advantages of coupled aquaponics are in the most efficient use of resources such as feed for nutrient input, phosphorous, water and energy as well as in an increase of fish welfare. The multivariate system design approach allows coupled aquaponics to be installed in all geographic regions, from the high latitudes to arid and desert regions, with specific adaptation to the local environmental conditions. This chapter provides an overview of the historical development, general system design, upscaling, saline and brackish water systems, fish and plant choices as well as management issues of coupled aquaponics especially in Europe.

Keywords Coupled aquaponics · Fish and plant choice · Nutrient cycles · Polyponic systems · Functions

Contents


H. W. Palm · U. Knaus · S. M. Strauch

Faculty of Agricultural and Environmental Sciences, Department of Aquaculture and Sea-Ranching, University of Rostock, Rostock, Germany

S. Appelbaum

French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beersheba, Israel

B. Kotzen

School of Design, University of Greenwich, London, UK

© The Author(s) 2019 163

S. Goddek et al. (eds.), Aquaponics Food Production Systems, https://doi.org/10.1007/978-3-030-15943-6_7


References

Alberts-Hubatsch H, Ende S, Schuhn A, von der Marwitz C, Wirtz A, Fuchs V, Henjes J, Slater M (2017) Integration of hybrid striped bass Morone saxatilis x M. chrysops, noble crayfish Astacus Astacus, watercress Nasturtium officinale and microalge Nannochloropsis limnetica in an experimental aquaponic system. Dubrovnik meeting abstract, EAS 2017 Oostende, Belgium

Al-Hafedh YS, Alam A, Beltagi MS (2008) Food production and water conservation in a recirculating aquaponic system in Saudi Arabia at different ratios of fish feed to plants. J World Aquacult Soc 39(4):510—520. https://doi.org/10.1111/j.1749-7345.2008.00181.x

Appelbaum S, Kotzen B (2016) Further investigations of aquaponics using brackish water resources of the Negev desert. Ecocycles Sci J Eur Ecocycles Soc 2(2):26—35. https://doi.org/10.19040/ ecocycles.v2i2s.53

Bais HP, Park SW, Weir TL, Callaway RM, Vivanco JM (2004) How plants communicate using the underground information superhighway. Trends Plant Sci 9(1):26—32

Barnhart C, Hayes L, Ringle D (2015) Food safety hazards associated with smooth textured leafy greens produced in aquaponic, hydroponic, and soil-based systems with and without roots in retail. University of Minnesota Aquaponics. The University of Minnesota Aquaponics. 17 p

Baßmann B, Brenner M, Palm HW (2017) Stress and welfare of African catfish (Clarias gariepinus Burchell, 1822) in a coupled aquaponic system. Water 9(7):504. https://doi.org/10.3390/ w9070504

Baßmann B, Harbach H, Weißbach S, Palm HW (2018) Effect of plant density in coupled aquaponics on the welfare status of African catfish (Clarias gariepinus). J World Aquacult Soc. (in press)

Bittsanszky A, Uzinger N, Gyulai G, Mathis A, Villarroel M, Kotzen B, Komives T (2016) Nutrient supply of plants in aquaponic systems. Ecocycles Sci J Eur Ecocycles Soc 2(2):17—20. https:// doi.org/10.19040/ecocycles.v2i2.57

Blidariu F, Drasovean A, Grozea A (2013a) Evaluation of phosphorus level in green lettuce conventional grown under natural conditions and aquaponic system. Bull Univ Agric Sci Vet Med Cluj-Napoca Anim Sci Biotechnol:128—135

Blidariu F, Alexandru D, Adrian G, Isidora R, Dacian L (2013b) Evolution of nitrate level in green lettuce conventional grown under natural conditions and aquaponic system. Sci Pap Anim Sci Biotechnol 46(1):244—250

Chalmers GA (2004) Aquaponics and food safety. Alberta April, Lethbridge, 77 p

Comeau Y (2008) Microbial metabolism. In: Biological wastewater treatment: principles, modeling and design, Cap, 2. IWA/Cambridge University Press, London, pp 9—32

Dakora FD, Phillips DA (2002) Root exudates as mediators of mineral acquisition in low-nutrient environments. In: Food security in nutrient-stressed environments: exploiting plants' genetic capabilities. Springer, Dordrecht, pp 201—213

Danaher JJ, Shultz RC, Rakocy JE, Bailey DS (2013) Alternative solids removal for warm water recirculating raft aquaponic systems. J World Aquacult Soc 44(3):374—383. https://doi.org/10. 1111/jwas.12040

Davy AJ, Bishop GF, Costa CSB (2001) Salicornia L. (Salicornia pusilla J. Woods, S. ramosissima J. Woods, S. europaea L., S. obscura PW ball & Tutin, S. nitens PW ball & Tutin, S. fragilis PW ball & Tutin and S. dolichostachya moss). J Ecol 89(4):681—707

Delaide B, Goddek S, Gott J, Soyeurt H, Jijakli MH (2016) Lettuce (Lactuca sativa L. var. Sucrine) growth performance in complemented aquaponic solution outperforms hydroponics. Water 8 (10):467

Delaide B, Delhaye G, Dermience M, Gott J, Soyeurt H, Jijakli MH (2017) Plant and fish production performance, nutrient mass balances, energy and water use of the PAFF box, a small-scale aquaponic system. Aquac Eng 78:130—139

Diem TNT, Konnerup D, Brix H (2017) Effects of recirculation rates on water quality and Oreochromis niloticus growth in aquaponic systems. Aquac Eng 78:95—104. https://doi.org/ 10.1016/j.aquaeng.2017.05.002

Edaroyati MP, Aishah HS, Al-Tawaha AM (2017) Requirements for inserting intercropping in aquaponics system for sustainability in agricultural production system. Agron Res 15 (5):2048—2067. https://doi.org/10.15159/AR.17.070

Endut A, Jusoh A, Ali N, Wan Nik WNS, Hassan A (2009) Effect of flow rate on water quality parameters and plant growth of water spinach (Ipomoea aquatica) in an aquaponic recirculating system. Desalin Water Treat 5:19—28. https://doi.org/10.5004/dwt.2009.559

FAO (2017) In: Subasinghe R (ed) World aquaculture 2015: a brief overview, FAO fisheries and aquaculture circular no. 1140. FAO, Rome

Geelen C (2016) Dynamic model of an INAPRO demonstration aquaponic system. Thesis biobased chemistry and technology. Wageningen University Agrotechnology and Food Sciences. 50 p

Goddek S, Vermeulen T (2018) Comparison of Lactuca sativa growth performance in conventional and RAS-based hydroponic systems. Aquac Int:1—10. https://doi.org/10.1007/s10499-0180293-8

Goddek S, Espinal C, Delaide B, Jijakli M, Schmautz Z, Wuertz S, Keesman K (2016) Navigating towards decoupled aquaponic systems: a system dynamics design approach. Water 8:303. https://doi.org/10.3390/w8070303

Graber A, Junge R (2009) Aquaponic systems: nutrient recycling from fish wastewater by vegetable production. Desalination 246(1—3):147—156

Graber A, Antenen N, Junge R (2014) The multifunctional aquaponic system at ZHAW used as research and training lab. In: Conference VIVUS: transmission of innovations, knowledge and practical experience into everyday practice. Strahinj: Biotehniški center, Naklo. http://www.bcnaklo.si/uploads/media/29-Graber-Antenen-Junge-Z.pdf

Gunning D (2016) Cultivating Salicornia europaea (Marsh Samphire), Irish Sea Fisheries Board, http://www.bim.ie/media/bim/content/news,and,events/BIM,Cultivating,,Salicornia,europaea,-, Marsh,Samphire.pdf

Heuvelink E (2018) Tomatoes. In: Heuvelink E (ed) Crop production science in horticulture. Wageningen University/CABI, Wallingford, 388 p

Hortidaily (2015) Dutch start third trial on tomatoes with 100% LED-lighting: 100,6 Kg/m2 at the Improvement Centre in Bleiswijk. What's next? https://www.hortidaily.com/article/6022598/ kg-m-at-the-improvement-centre-in-bleiswijk-what-s-next/

Hussain T, Verma AK, Tiwari VK, Prakash C, Rathore G, Shete AP, Nuwansi KKT (2014) Optimizing koi carp, Cyprinus carpio var. koi (Linnaeus, 1758), stocking density and nutrient recycling with spinach in an aquaponic system. J World Aquacult Soc 45(6):652—661. https:// doi.org/10.1111/jwas.12159

Hussain T, Verma AK, Tiwari VK, Prakash C, Rathore G, Shete AP, Saharan N (2015) Effect of water flow rates on growth of Cyprinus carpio var. koi (Cyprinus carpio L., 1758) and spinach plant in aquaponic system. Aquac Int 23(1):369—384. https://doi.org/10.1007/s10499-0149821-3

Jeppesen E, Jensen JP, SØndergaard M, Lauridsen T, Landkildehus F (2000) Trophic structure, species richness and biodiversity in Danish lakes: changes along a phosphorus gradient. Freshw Biol 45(2):201—218

Keskinen T, Marjomäki TJ (2003) Growth of pikeperch in relation to lake characteristics: total phosphorus, water colour, lake area and depth. J Fish Biol 63(5):1274—1282

Khandaker M, Kotzen B (2018) The potential for combining living wall and vertical farming systems with aquaponics with special emphasis on substrates. Aquac Res 49(4):1454—1468

Knaus U, Palm HW (2017a) Effects of fish biology on ebb and flow aquaponical cultured herbs in northern Germany (Mecklenburg Western Pomerania). Aquaculture 466:51—63. https://doi.org/ 10.1016/j.aquaculture.2016.09.025

Knaus U, Palm HW (2017b) Effects of the fish species choice on vegetables in aquaponics under spring-summer conditions in northern Germany (Mecklenburg Western Pomerania). Aquaculture 473:62—73. https://doi.org/10.1016/j.aquaculture.2017.01.020

Knaus U, Segade Á, Robaina L (2015) Training School 1 — Aquaponic trials: improving water quality and plant production through fish management and diet. 25—29 May 2015, Universidad de Las Palmas de Gran Canaria, Spain. Cost Action FA1305, The EU Aquaponics Hub — Realising Sustainable Integrated Fish and Vegetable Production for the EU

Knaus U, Appelbaum S, Palm HW (2018a) Significant factors affecting the economic sustainability of closed backyard aquaponics systems. Part IV: autumn herbs and polyponics. AACL Bioflux 11(6):1760—1775

Knaus U, Appelbaum S, Castro C, Sireeni J, Palm HW (2018b) Growth performance of basil in a small-scale aquaponic system with the production of Tilapia (Oreochromis niloticus) and African catfish (Clarias gariepinus). (In preparation)

König B, Junge R, Bittsanszky A, Villarroel M, Komives T (2016) On the sustainability of aquaponics. Ecocycles Sci J Eur Ecocycles Soc 2(1):26—32. https://doi.org/10.19040/ ecocycles.v2i1.50

Kotzen B, Appelbaum S (2010) An investigation of aquaponics using brackish water resources in the Negev Desert. J Appl Aquac 22(4):297—320. https://doi.org/10.1080/10454438.2010. 527571

Lehmonen R, Sireeni J (2017) Comparison of plant growth and quality in hydroponic and aquaponic systems. Bachelor's thesis, University of Jyväskylä, Jyväskylä, Finland. 27 p

Lennard WA, Leonard BV (2004) A comparison of reciprocating flow versus constant flow in an integrated, gravel bed, aquaponic test system. Aquac Int 12(6):539—553. https://doi.org/10. 1007/s10499-004-8528-2

Lennard WA, Leonard BV (2006) A comparison of three different hydroponic sub-systems (gravel bed, floating and nutrient film technique) in an aquaponic test system. Aquac Int 14(6):539—550. https://doi.org/10.1007/s10499-006-9053-2

Lewis WM, Yopp JH, Schramm HL Jr, Brandenburg AM (1978) Use of hydroponics to maintain quality of recirculated water in a fish culture system. Trans Am Fish Soc 107(1):92—99. https:// doi.org/10.1577/1548-8659(1978)107\92:UOHTMQ\2.0.CO;2

Lobillo JR, Fernández-Cabanás VM, Carmona E, Candón FJL (2014) Manejo básico y resultados preliminares de crecimiento y supervivencia de tencas (Tinca tinca L.) y lechugas (Lactuca sativa L.) en un prototipo acuapónico. ITEA 110(2):142—159. https://doi.org/10.12706/itea. 2014.009

Lorena S, Cristea V, Oprea L (2008) Nutrients dynamic in an aquaponic recirculating system for sturgeon and lettuce (Lactuca sativa) production. Lucrări Științifice-Zootehnie și Biotehnologii,

Universitatea de Științe Agricole și Medicină Veterinară a Banatului Timișoara 41(2):137—143

Lorenzen L (2017) Vergleich des Wachstums von chinesischem Blätterkohl (Brassica rapa chinensis) in drei verschiedenen Hydroponiksubsystemen unter aquaponischen Bedingungen. Agrar- und Umweltwissenschaftliche Fakultät, Lehrstuhl Aquakultur und Sea-Ranching, Universität Rostock. Masterarbeit. 63 p. [in German]

Love DC, Fry JP, Li X, Hill ES, Genello L, Semmens K, Thompson RE (2015) Commercial aquaponics production and profitability: findings from an international survey. Aquaculture 435:67—74. https://doi.org/10.1016/j.aquaculture.2014.09.023

Loyacano HA, Grosvenor RB (1973) Effects of Chinese waterchestnut in floating rafts on production of channel catfish in plastic pools. Proc Annu Conf Southeast Assoc Game Fish Comm 27:471—473

Mariscal-Lagarda MM, Páez-Osuna F, Esquer-Méndez JL, Guerrero-Monroy I, del Vivar AR, Félix-Gastelum R (2012) Integrated culture of white shrimp (Litopenaeus vannamei) and tomato (Lycopersicon esculentum mill) with low salinity groundwater: management and production. Aquaculture 366:76—84. https://doi.org/10.1016/j.aquaculture.2012.09.003

McMurtry MR, Nelson PV, Sanders DC, Hodges L (1990) Sand culture of vegetables using recirculated aquacultural effluents. Appl Agric Res 5(4):280—284

McMurtry MR, Sanders DC, Patterson RP, Nash A (1993) Yield of tomato irrigated with recirculating aquacultural water. J Prod Agric 6(3):428—432. https://doi.org/10.2134/jpa1993. 0428

McMurtry MR, Sanders DC, Cure JD, Hodson RG, Haning BC, Amand PCS (1997) Efficiency of water use of an integrated fish/vegetable co-culture system. J World Aquacult Soc 28 (4):420—428. https://doi.org/10.1111/j.1749-7345.1997.tb00290.x

Munguia-Fragozo P, Alatorre-Jacome O, Rico-Garcia E, Torres-Pacheco I, Cruz-Hernandez A, Ocampo-Velazquez RV, Garcia-Trejo JF, Guevara-Gonzalez RG (2015) Perspective for aquaponic systems: "omic" technologies for microbial community analysis. BioMed Res Int 2015: 480386. Hindawi Publishing Corporation. BioMed Research International. 2015, 10 pages. https://doi.org/10.1155/2015/480386

Naegel LC (1977) Combined production of fish and plants in recirculating water. Aquaculture 10 (1):17—24. https://doi.org/10.1016/0044-8486(77)90029-1

Nelson RL, Pade JS (2007) Aquaponic equipment the clarifier. Aquaponics J 4(47):30—31

Nozzi V, Strofaldi S, Piquer IF, Di Crescenzo D, Olivotto I, Carnevali O (2016) Amyloodinum ocellatum in Dicentrarchus labrax: study of infection in salt water and freshwater aquaponics. Fish Shellfish Immunol 57:179—185. https://doi.org/10.1016/j.fsi.2016.07.036

Nuwansi KKT, Verma AK, Prakash C, Tiwari VK, Chandrakant MH, Shete AP, Prabhath GPWA (2016) Effect of water flow rate on polyculture of koi carp (Cyprinus carpio var. koi) and goldfish (Carassius auratus) with water spinach (Ipomoea aquatica) in recirculating aquaponic system. Aquac Int 24(1):385—393. https://doi.org/10.1007/s10499-015-9932-5

Palm HW, Seidemann R, Wehofsky S, Knaus U (2014a) Significant factors influencing the economic sustainability of closed aquaponic systems. part I: system design, chemo-physical parameters and general aspects. AACL Bioflux 7(1):20—32

Palm HW, Bissa K, Knaus U (2014b) Significant factors affecting the economic sustainability of closed aquaponic systems. part II: fish and plant growth. AACL Bioflux. 7(3):162—175

Palm HW, Nievel M, Knaus U (2015) Significant factors affecting the economic sustainability of closed aquaponic systems. part III: plant units. AACL Bioflux 8(1):89—106

Palm HW, Strauch S, Knaus U, Wasenitz B (2016) Das FischGlasHaus — eine Innovationsinitiative zur energie- und nährstoffeffizienten Produktion unterschiedlicher Fisch- und Pflanzenarten in Mecklenburg-Vorpommern ("Aquaponik in MV"). Fischerei & Fischmarkt in MecklenburgVorpommern 1/2016—16:38—47 [in German]

Palm HW, Wasenitz B, Knaus U, Bischoff A, Strauch SM (2017) Two years of aquaponics research in the FishGlassHouse — lessons learned. Dubrovnik meeting abstract, Aquaculture Europe 2017, EAS Oostende Belgium

Palm HW, Knaus U, Appelbaum S, Goddek S, Strauch SM, Vermeulen T, Jijakli MH, Kotzen B (2018) Towards commercial aquaponics: a review of systems, designs, scales and nomenclature. Aquac Int 26(3):813—842

Palm HW, Knaus U, Wasenitz B, Bischoff-Lang AA, Strauch SM (2019) Proportional up scaling of African catfish (Clarias gariepinus Burchell, 1822) commercial recirculating aquaculture systems disproportionally affects nutrient dynamics. Aquac Int 26(3):813—842. https://doi.org/10. 1007/s10499-018-0249-z

Pantanella E (2012) Nutrition and quality of aquaponic systems. Ph.D. thesis. Università degli Studi della Tuscia. Viterbo, Italy. 124 p

Presas Basalo F (2017) Does water potassium concentration in aquaponics affect the performance of African catfish Clarias gariepinus (Burchell, 1822)? Master's thesis, Department of Animal Sciences Aquaculture and Fisheries Group, Wageningen University and University of Rostock Department of Aquaculture and Sea-Ranching. 75 p

Pribbernow M (2016) Vergleich des Wachstums von Basilikum (Ocimum basilicum L.) in drei verschiedenen Hydroponik-Subsystemen unter aquaponischer Produktion. Agrar- und Umweltwissenschaftliche Fakultät, Lehrstuhl Aquakultur und Sea-Ranching, Universität Rostock. Masterarbeit. 98 p. [in German]

Rakocy JE (1989) Hydroponic lettuce production in a recirculating fish culture system. In: Island perspectives. Vol. 3. agricultural experiment station, University of the Virgin Islands. pp 5—10

Rakocy JE (2012) Chapter 14: aquaponics — integrating fish and plant culture. In: Tidwell JH (ed) Aquaculture production systems. Wiley-Blackwell, Oxford, pp 344—386

Rakocy JE, Shultz RC, Bailey DS (2000) Commercial aquaponics for the Caribbean: proceedings of the Gulf and Caribbean Fisheries Institute [Proc. Gulf Caribb. Fish. Inst.]. no. 51, pp 353—364 Rakocy J, Shultz RC, Bailey DS, Thoman ES (2003) Aquaponic production of Tilapia and basil: comparing a batch and staggered cropping system. In: South Pacific soilless culture conferenceSPSCC 648. pp 63—69

Rakocy JE, Bailey DS, Shultz RC, Thoman ES (2004) Update on Tilapia and vegetable production in the UVI aquaponic system. In: New dimensions on farmed Tilapia: proceedings of the sixth international symposium on Tilapia in Aquaculture, held September. pp 12—16

Rakocy JE, Masser MP, Losordo TM (2006) Recirculating aquaculture tank production systems: aquaponics-integrating fish and plant culture. SRAC Publication 454:1—16

Rakocy JE, Bailey DS, Shultz RC, Danaher JJ (2011) A commercial-scale aquaponic system developed at the University of the Virgin Islands. In: Proceedings of the 9th international symposium on Tilapia in Aquaculture. pp 336—343

Ronzón-Ortega M, Hernández-Vergara MP, Pérez-Rostro CI (2012) Hydroponic and aquaponic production of sweet basil (Ocimum basilicum) and giant river prawn (Macrobrachium rosenbergii). Trop Subtrop Agroecosyst 15(2):63—71

Sace CF, Fitzsimmons KM (2013) Vegetable production in a recirculating aquaponic system using Nile Tilapia (Oreochromis niloticus) with and without freshwater prawn (Macrobrachium rosenbergii). Acad J Agric Res 1(12):236—250

Saha S, Monroe A, Day MR (2016) Growth, yield, plant quality and nutrition of basil (Ocimum basilicum L.) under soilless agricultural systems. Ann Agric Sci 61(2):181—186

Savidov N (2005) Evaluation of aquaponics technology in Alberta, Canada. Aquaponics Journal 37:20—25

Schmautz Z, Graber A, Jaenicke S, Goesmann A, Junge R, Smits TH (2017) Microbial diversity in different compartments of an aquaponics system. Arch Microbiol 199(4):613—620

Seawright DE, Stickney RR, Walker RB (1998) Nutrient dynamics in integrated aquaculture— hydroponics systems. Aquaculture 160(3—4):215—237. https://doi.org/10.1016/S0044-8486(97) 00168-3

Shete AP, Verma AK, Chadha NK, Prakash C, Peter RM, Ahmad I, Nuwansi KKT (2016) Optimization of hydraulic loading rate in aquaponic system with common carp (Cyprinus carpio) and mint (Mentha arvensis). Aquac Eng 72:53—57. https://doi.org/10.1016/j.aquaeng. 2016.04.004

Simeonidou M, Paschos I, Gouva E, Kolygas M, Perdikaris C (2012) Performance of a small-scale modular aquaponic system. AACL Bioflux. 5(4):182—188

Skar SLG, Liltved H, Drengstig A, Homme JM, Kledal PR, Paulsen H, Björnsdottir R, Oddson S, Savidov N (2015) Aquaponics NOMA (Nordic Marin) — new innovations for sustainable aquaculture in the Nordic countries. Nordic Innovation Publication 2015:06, 108 p

Somerville C, Cohen M, Pantanella E, Stankus A, Lovatelli A (2014) Small-scale aquaponic food production. Integrated fish and plant farming, FAO fisheries and aquaculture technical paper no. 589. FAO, Rome. (262 pp)

Strauch SM, Wenzel LC, Bischoff A, Dellwig O, Klein J, Schüch A, Wasenitz B, Palm HW (2018) Commercial African catfish (Clarias gariepinus) recirculating aquaculture systems: assessment of element and energy pathways with special focus on the phosphorus cycle. Sustainability 2018 (10):1805. https://doi.org/10.3390/su10061805

Strauch SM, Bischoff AA, Bahr J, Baßmann B, Oster M, Wasenitz B, Palm HW (2019, submitted) Effects of ortho-phosphate on growth performance, welfare and product quality of juvenile African catfish (Clarias gariepinus). Fishes 4:3. https://doi.org/10.3390/fishes4010003

Sutton RJ, Lewis WM (1982) Further observations on a fish production system that incorporates hydroponically grown plants. Progress Fish Cult 44(1):55—59. https://doi.org/10.1577/15488659(1982)44[55,FOOAFP]2.0.CO;2

Tarafdar JC, Claassen N (1988) Organic phosphorus compounds as a phosphorus source for higher plants through the activity of phosphatases produced by plant roots and microorganisms. Biol Fertil Soils 5(4):308—312

Tarafdar JC, Yadav RS, Meena SC (2001) Comparative efficiency of acid phosphatase originated from plant and fungal sources. J Plant Nutr Soil Sci 164(3):279—282

Thorarinsdottir RI (2014) Implementing commercial aquaponics in Europe —first results from the Ecoinnovation project EcoPonics. Aquaculture Europe 14, October 14—17 2014, San Sebastian, Spain

Thorarinsdottir RI, Kledal PR, Skar SLG, Sustaeta F, Ragnarsdottir KV, Mankasingh U, Pantanella E, van de Ven R, Shultz RC (2015) Aquaponics guidelines. 64 p

Tran H (2015) Aquaponics-coupled and decoupled systems and the water quality needs of each. World Aquaculture 2015 — Meeting Abstract Jeju, Korea, May 27, 2015. World Aquaculture Society PO Box 397 Sorrento, LA 70778—0397 (USA)

Tyson RV, Simonne EH, Treadwell DD, White JM, Simonne A (2008) Reconciling pH for ammonia biofiltration and cucumber yield in a recirculating aquaponic system with perlite biofilters. Hortscience 43(3):719—724

USGS. The USGS Water Science School. https://water.usgs.gov/edu/gallery/global-water-volume. html

Van der Heijden PGM, Roest CWJ, Farrag F, ElWageih H, Sadek S, Hartgers EM, Nysingh SL (2014) Integrated agri-aquaculture with brackish waters in Egypt: mission report (March 9— March 17, 2014) (No. 2526). Alterra Wageningen UR

Villarroel M, Rodriguez Alvariño JM, Duran Altisent JM (2011) Aquaponics: integrating fish feeding rates and ion waste production for strawberry hydroponics. Span J Agric Res 9 (2):537—545

Waller U, Buhmann AK, Ernst A, Hanke V, Kulakowski A, Wecker B, Orellana J, Papenbrock J (2015) Integrated multi-trophic aquaculture in a zero-exchange recirculation aquaculture system for marine fish and hydroponic halophyte production. Aquac Int 23(6):1473—1489. https://doi. org/10.1007/s10499-015-9898-3

Watten BJ, Busch RL (1984) Tropical production of Tilapia (Sarotherodon aurea) and tomatoes (Lycopersicon esculentum) in a small-scale recirculating water system. Aquaculture 41 (3):271—283. https://doi.org/10.1016/0044-8486(84)90290-4

Wermter L (2016) Comparison of three different hydroponic sub-systems of Cucumis sativus L. grown in an aquaponic system. Department of Agronomy. Faculty of Agricultural and Environmental Sciences (AUF), Professorship of Crop production and Aquaculture and Sea-Ranching. University of Rostock, Germany. Masterthesis. 40 p

Wilson G (2005) Greenhouse aquaponics proves superior to inorganic hydroponics. Aquaponics J 39(4):14—17

Yavuzcan Yildiz H, Robaina L, Pirhonen J, Mente E, Domínguez D, Parisi G (2017) Fish welfare in aquaponic systems: its relation to water quality with an emphasis on feed and faeces-a review. Water 9(1):13

Zimmermann J (2017) Vergleich des Wachstums von Marokkanischer Minze (Mentha spicata) in drei verschiedenen Hydroponik Subsystemen unter aquaponischer Produktion. Agrar- und Umweltwissenschaftliche Fakultät, Lehrstuhl Aquakultur und Sea-Ranching, Universität Rostock. Masterarbeit. 71 p. [in German]

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

image-20200929112107029