The Marketplace is now widely available! Install insights today.
Download AppBlogFeaturesPricingSupportSign In

Benz Kotzen, Maurício Gustavo Coelho Emerenciano, Navid Moheimani, and Gavin M. Burnell

Abstract Whilst aquaponics may be considered in the mid-stage of development, there are a number of allied, novel methods of food production that are aligning alongside aquaponics and also which can be merged with aquaponics to deliver food efficiently and productively. These technologies include algaeponics, aeroponics, aeroaquaponics, maraponics, haloponics, biofloc technology and vertical aquaponics. Although some of these systems have undergone many years of trials and research, in most cases, much more scientific research is required to understand intrinsic processes within the systems, efficiency, design aspects, etc., apart from the capacity, capabilities and benefits of conjoining these systems with aquaponics.

Keywords Aquaponics alternatives · Algaeponics · Aeroponics · Aquaeroponics · Biofloc Technologies · Digeponics · Haloponics · Maraponics · Vermiponics · Vertical aquaponics

B. Kotzen

School of Design, University of Greenwich, London, UK

M. G. C. Emerenciano

Santa Catarina State University (UDESC), Aquaculture Laboratory (LAQ), Laguna, SC, Brazil

CSIRO Agriculture and Food, Aquaculture Program, Bribie Island Research Centre, Bribie Island, QLD, Woorim, Australia

N. Moheimani

Algae R&D Centre Director, School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA, Australia

G. M. Burnell

School of Biological, Earth and Environmental Sciences, University College Cork, Cork, Ireland

© The Author(s) 2019 301

S. Goddek et al. (eds.), Aquaponics Food Production Systems,


Addy MM, Kabir F, Zhang R, Lu Q, Deng X, Current D, Griffith R, Ma Y, Zhou W, Chen P, Ruan R (2017) Co-cultivation of microalgae in aquaponic systems. Bioresour Technol 245 (2017):27—34

Adhikary S (2012) Vermicompost, the story of organic gold: a review. Agricult Sci 3(7). https://doi. org/10.4236/as.2012.37110

Al-Hafedh YS, Alam A, Beltagi MS (2008) Food production and water conservation in a recirculating Aquaponic system in Saudi Arabia at different ratios of fish feed to plants. J World Aquacult Soc 39(4):510—520

Appelbaum S, Kotzen B (2016) Further investigations of Aquaponics using brackish water resources of the Negev Desert. Ecocycles Scientific J Eur Ecocycl Soc 2(2):26—35. ISSN 2416-2140

Arnold J (2017) Greenhouse business: start-up costs, profits and labor, 19 April 2017. https://blog.

Arnold SJ, Sellars MJ, Crocos PJ, Coman GJ (2006) An evaluation of stocking density on the intensive production of juvenile brown tiger shrimp (Penaeus esculentus). Aquaculture 256 (1):174—179

Avnimelech Y (2015) Biofloc technology: a practical guide book, 3rd edn. The World Aquaculture Society, Baton Rouge

Ayre JM, Moheimani NR, Borowitzka MA (2017) Growth of microalgae on undiluted anaerobic digestate of piggery effluent with high ammonium concentrations. Algal Res 24:218—226

Badgery-Parker J, James L (2010) Commercial greenhouse cucumber production. NSW Agriculture, Orange

Ballester ELC, Abreu PC, Cavalli RO, Emerenciano M, De Abreu L, Wasielesky W Jr (2010) Effect of practical diets with different protein levels on the performance of Farfantepenaeus paulensis juveniles nursed in a zero exchange suspended microbial flocs intensive system. Aquac Nutr 16 (2):163—172

Barbosa M (2017) Biofloc technology: do filtering elements might affects lettuce aquaponics production integrated with tilapia? A thesis presented at animal science postgraduate program, Santa Catarina State University (Degree of Master of Science), Chapecó, Santa Catarina, Brazil, December 2017

Borowitzka MA (1999) Commercial production of microalgae: ponds, tanks, tubes and fermenters. J Biotechnol 70(1—3):313—321

Borowitzka MA, Moheimani NR (2013) Open pond culture systems. In: Algae for biofuels and energy. Springer, Dordrecht

Brown EJ, Button DK (1979) Phosphate-limited growth kinetics of Selenastrum capricornutum (CHLOROPHYCEAE). J Phycol 15(3):305

Bugbee B (2017) Economics of LED lighting. In: Gupta D (ed) Light emitting diodes for agriculture — smart lighting. Springer, Singapore

Chisholm SW, Brand LE (1981) Persistence of cell division phasing in marine phytoplankton in continuous light after entrainment to light: dark cycles. J Exp Mar Biol Ecol 51(2—3):107—118

Clawson JM, Hoehn A, Stodieck LS, Todd P, Stoner RJ (2000) NASA — review of aeroponics — aeroponics for spaceflight plant growth. Aeroponics DIY.

Crab R, Chielens B, Wille M, Bossier P, Verstraete W (2010) The effect of different carbon sources on the nutritional value of biofloc, a feed for Macrobrachium rosenbergii postlarvae. Aquac Res 41:559—567

Croft MT, Lawrence AD, Raux-Deery E, Warren MJ, Smith AG (2005) Algae acquire vitamin B 12 through a symbiotic relationship with bacteria. Nature 438(7064):90

Delrue F, Álvarez-Díaz PD, Fon-Sing S, Fleury G, Sassi JF (2016) The environmental biorefinery: using microalgae to remediate wastewater, a win-win paradigm. Energies 9(3):132

Deppeler S, Petrou K, Schulz KG, Westwood K, Pearce I, McKinlay J, Davidson A (2018) Ocean acidification of a coastal Antarctic marine microbial community reveals a critical threshold for COsub2/sub tolerance in phytoplankton productivity. Biogeosciences 15(1):209—231

Droop MR (1973) Some thoughts on nutrient limitation in algae. J Phycol 9(3):264—272

Dufault RJ, Korkmaz A (2000) Potential of biosolids from shrimp aquaculture as a fertiliser in bell pepper production. Compost Sci Util 3:310—319

Dufault RJ, Korkmaz A, Ward B (2001) Potential of biosolids from shrimp aquaculture as a fertiliser for broccoli production. Compost Sci Util 9:107—114

Durigon EG, Sgnaulin T, Pinho SM, Brol J, Emerenciano MGC (2017) Bioflocos e seus benefícios nutricionais na pré-engorda de tilápias. Aquacult Brasil 8:50—54

Emerenciano M, Cuzon G, Goguenheim J, Gaxiola G (2011) Floc contribution on spawning performance of blue shrimp Litopenaeus stylirostris. Aquac Res 44(1):75—85

Emerenciano MGC, Ballester ELC, Cavalli RO, Wasielesky W (2012) Biofloc technology application as a food source in a limited water exchange nursery system for pink shrimp Farfantepenaeus brasiliensis (Latreille, 1817). Aquac Res 43(3):447—457

Emerenciano M, Gaxiola G, Cuzon G (2013) Biofloc technology (BFT): a review for aquaculture application and animal food industry. In: Biomass now-cultivation and utilization. InTech, Rijeka

Emerenciano MGC, Martínez-Córdova LR, Martínez-Porchas M, Miranda-Baeza A (2017) Biofloc technology (BFT): a tool for water quality management in aquaculture, water quality, In: Hlanganani Tutu (ed). InTech

Furtado PS, Poersch LH, Wasielesky W (2011) Effect of calcium hydroxide, carbonate and sodium bicarbonate on water quality and zootechnical performance of shrimp Litopenaeus vannamei reared in bio-flocs technology (BFT) systems. Aquaculture 321:130—135

Galloway JN, Dentener FJ, Capone DG, Boyer EW, Howarth RW, Seitzinger SP, Asner GP (2004) Nitrogen cycles: past, present, and future. Biogeochemistry 70(2):153—226

Gordon JM, Polle JE (2007) Ultra-high bioproductivity from algae. Appl Microbiol Biotechnol 76 (5):969—975

Gunning D, Maguire J, Burnell G (2016) The development of sustainable saltwater-based food production systems: a review of established and novel concepts. Water 8(12):598. https://doi. org/10.3390/w8120598

Gupta D (ed) (2017) Light emitting diodes for agriculture — smart lighting. Springer, Singapore

Hikosaka Y, Kanechi M, Uno Y (2014) A novel aeroponic technique using dry-fog spray fertigation to grow leaf lettuce (Lactuca sativa L. var. crispa) with water-saving hydroponics. Adv Hortic Sci 28(4):184—189

Joesting HM, Blaylock R, Biber P, Ray A (2016) The use of marine aquaculture solid waste for nursery of salt marsh plants Spartina alterniflora and Juncus roemerianus. Aquac Rep 3:108—114

Khandaker M, Kotzen B (2018) The potential for combining living wall and vertical farming systems with aquaponics with special emphasis on substrates. Aquacult Res 23 January 2018.

Kotzen B, Appelbaum S (2010) An investigation of aquaponics using brackish water resources in the Negev Desert. J Appl Aquacult 22(4):297—320. ISSN 1045-4438 (print), 1545-0805 (online).

König B, Junge R, Bittsanszky A, Villarroel M, Komives T (2016) On the sustainability of aquaponics. Ecocycles 2(1):26—32

Kuhn DD, Boardman GD (2008) Use of microbial flocs generated from Tilapia effluent as a nutritional supplement for shrimp, Litopenaeus vannamei, in recirculating aquaculture systems. J World Aquacult Soc 39:72—82

Lakhiar IA, Gao J, Naz ST, Chandio FA, Buttar NA (2018) Modern plant cultivation technologies in agriculture under controlled environment: a review on aeroponics. J Plant Interact 13 (1):338—352.

Langton RW, Haines KC, Lyon RE (1977) Ammonia nitrogen produced by the bivalve mollusc Tapes japonica and its recovery by the red seaweed Hypnea musciformis in a tropical mariculture system. Helgol Wiss Meeresunters 30:217—229

Lenz GL, Durigon EG, Lapa KG, Emerenciano MGC (2017) Produção de alface (Lactuca sativa) em efluentes de um cultivo de tilápias mantidas em sistema BFT em baixa salinidade. Bol Inst Pesca 43:614—630

Martínez-Córdova LR, Emerenciano M, Miranda-Baeza A, Martínez-Porchas M (2015) Microbialbased systems for aquaculture of fish and shrimp: an updated review. Rev Aquac 7(2):131—148

Martínez-Córdova LR, Martínez-Porchas M, Emerenciano MG, Miranda-Baeza A, Gollas-Galván T (2017) From microbes to fish the next revolution in food production. Crit Rev Biotechnol 37:287—295

Megahed M (2010) The effect of microbial biofloc on water quality, survival and growth of the green tiger shrimp (Penaeus semisulcatus) fed with different crude protein levels. J Arab Aquacult Soc 5:119—142

Moheimani NR (2016) Tetraselmis suecica culture for COsub2/sub bioremediation of untreated flue gas from a coal-fired power station. J Appl Phycol 28(4):2139—2146

Moheimani NR, Borowitzka MA (2007) Limits to productivity of the alga Pleurochrysis carterae (Haptophyta) grown in outdoor raceway ponds. Biotechnol Bioeng 96(1):27—36

Moheimani NR, Parlevliet D (2013) Sustainable solar energy conversion to chemical and electrical energy. Renew Sust Energ Rev 27:494—504

Moheimani NR, Isdepsky A, Lisec J, Raes E, Borowitzka MA (2011) Coccolithophorid algae culture in closed photobioreactors. Biotechnol Bioeng 108(9):2078—2087

Moheimani NR, Webb JP, Borowitzka MA (2012) Bioremediation and other potential applications of coccolithophorid algae: a review. Algal Res 1(2):120—133

Moheimani NR, Parlevliet D, McHenry MP, Bahri PA, de Boer K (2015) Past, present and future of microalgae cultivation developments. In: Biomass and biofuels from microalgae. Springer, Cham, pp 1—18

Moheimani NR, Vadiveloo A, Ayre JM, Pluske JR (2018) Nutritional profile and in vitro digestibility of microalgae grown in anaerobically digested piggery effluent. Algal Res 35:362—369

Munoz R, Guieysse B (2006) Algal—bacterial processes for the treatment of hazardous contaminants: a review. Water Res 40(15):2799—2815

NASA Spinoff, Experiments Advance Gardening at Home and in Space, Spinoff2008/ch_3.html

National Geographic, About the common earthworm, mals/invertebrates/c/common-earthworm

Neori A, Shpigel M, Ben-Ezra D (2000) A sustainable integrated system for culture of fish, seaweed, and abalone. Aquaculture 186:279—291

Nwoba EG, Ayre JM, Moheimani NR, Ubi BE, Ogbonna JC (2016) Growth comparison of microalgae in tubular photobioreactor and open pond for treating anaerobic digestion piggery effluent. Algal Res 17:268—276

Nwoba EG, Moheimani NR, Ubi BE, Ogbonna JC, Vadiveloo A, Pluske JR, Huisman JM (2017) Macroalgae culture to treat anaerobic digestion piggery effluent (ADPE). Bioresour Technol 227:15—23

Oswald WJ (1988) Role of microalgae in liquid waste treatment and reclamation. In: Lembi CA, Robert Waaland J (eds) Algae and human affairs. Sponsored by the Phycological Society of America, Inc

Oswald WJ, Gotaas HB (1957) Photosynthesis in sewage treatment. Trans Am Soc Civ Eng 122 (1):73—105

Park JBK, Craggs RJ ( 2010) Wastewater treatment and algal production in high rate algal ponds with carbon dioxide addition. Water Sci Technol 61(3):633—639

Parkin GF, Owen WF (1986) Fundamentals of anaerobic digestion of wastewater sludges. J Environ Eng 112(5):867—920

Pinheiro I, Arantes R, Santo CME, Seiffert WQ (2017) Production of the halophyte Sarcocornia ambigua and Pacific white shrimp in an aquaponic system with biofloc technology. Ecol Eng 100:261—267

Pinho SM (2018) Tilapia nursery in aquaponics systems using bioflocs technology. A thesis presented at aquaculture Centre of Sao Paulo State University. Degree of Master of Science, Jaboticabal, Sao Paulo, Brazil, February 2018

Pinho SM, Molinari D, De Mello GL, Fitzsimmons KM, Emerenciano MGC (2017) Effluent from a biofloc technology (BFT) Tilapia culture on the aquaponics production of differente lettuce varieties. Ecol Eng 103:146—153

Poleo G, Aranbarrio JV, Mendoza L, Romero O (2011) Cultivo de cachama blanca en altas densidades y en dos sistemas cerrados. Pesq Agrop Brasileira 46(4):429—437

Poli MA, Schveitzer R, Nuñerr APO (2015) The use of biofloc technology in a South American catfish (Rhamdia quelen) hatchery: effect of suspended solids in the performance of larvae. Aquac Eng 66:17—21

Rahman SSA (2010) Effluent water characterization of intensive Tilapia culture units and its application in an integrated lettuce aquaponic production facility. A thesis submitted to the graduate faculty. Auburn University, Degree of Master of Science, Auburn Alabama, December 13 2010

Rakocy JE (2012) Aquaponics — integrating fish and plant culture. In: Tidwell JH (ed) Aquaculture Production Systems, 1st edn. Wiley-Blackwell, Oxford, pp 343—386

Ray AJ, Lewis BL, Browdy CL, Leffler JW (2010) Suspended solids removal to improve shrimp (Litopenaeus vannamei) production and an evaluation of a plant-based feed in minimalexchange, superintensive culture systems. Aquaculture 299:89—98

Richmond A, Becker EW (1986) Technological aspects of mass cultivation, a general outline. In: CRC handbook of microalgal mass culture, CRC Press, Boca Raton, pp 245—263

Rocha AF, Biazzetti Filho ML, Stech MR, Silva RP (2017) Lettuce production in aquaponic and biofloc systems with silver catfish Rhamdia quelen. Bol Inst Pesca 44:64—73

Schoumans OF, Chardon WJ, Bechmann ME, Gascuel-Odoux C, Hofman G, Kronvang B et al (2014) Mitigation options to reduce phosphorus losses from the agricultural sector and improve surface water quality: a review. Sci Total Environ 468:1255—1266

Sgnaulin T, Mello GL, Thomas MC, Esquivel-Garcia JR, Oca GARM, Emerenciano MGC (2018) Biofloc technology (BFT): an alternative aquaculture system for Piracanjuba Brycon orbignyanus? Aquaculture 485:119—123

Sharpley AN, Kleinman PJ, Heathwaite AL, Gburek WJ, Folmar GJ, Schmidt JP (2008) Phosphorus loss from an agricultural watershed as a function of storm size. J Environ Qual 37 (2):362—368

Shifrin NS, Chisholm SW (1981) Phytoplankton lipids: interspecific differences and effects of nitrate, silicate and light-dark cycles. J Phycol 17(4):374—384

Smith VH (1983) Low nitrogen to phosphorus ratios favor dominance by blue-green algae in lake phytoplankton. Science 221(4611):669—671

Stoknes K, Scholwin F, Krzesiński W, Wojciechowska E, Jasińska A (2016) Efficiency of a novel "food to waste to food" system including anaerobic digestion of food waste and cultivation of vegetables on digestate in a bubble-insulated greenhouse. Waste Manag 56:466—476. https://

Stokstad E (2010) Down on the shrimp farm. Science 328:1504—1505

Storey, A., 2015, Vertical farming costs and the math behind them, posted 6 October 2015 https://

Tibbitts TW, Cao W, and Wheeler RM (1994) Growth of potatoes for CELSS. NASA Contractor Report 177646

Touliatos D, Dodd IC, McAinsh M (2016) Vertical farming increases lettuce yield per unit areacompared to conventional horizontal hydroponics. Food and Energy Security 5(3):184—191

Turcios AE, Papenbrock J (2014) Sustainable treatment of aquaculture effluents — what can we learn for the past for the future? Sustainability 6:836—856

Virsile A, Olle M, Duchovskis P (2017) LED lighting in horticulture. In: Gupta D (ed) Light emitting diodes for agriculture — smart lighting. Springer, Singapore

Waller U, Buhmann AK, Ernst A, Hanke V, Kulakowski A, Wecker B, Orellana J, Papenbrock J (2015) Integrated multi-trophic aquaculture in a zero-exchange recirculation aquaculture system for marine fish and hydroponic halophyte production. Aquac Int 23:1473—1489

Weathers PJ, Zobel RW (1992) 1992, Aeroponics for the culture of organisms. Tissues Cells Biotechnol Adv 10(1):93—115

Wijihastuti RS, Moheimani NR, Bahri PA, Cosgrove JJ, Watanabe MM (2017) Growth and photosynthetic activity of Botryococcus braunii biofilms. J Appl Phycol 29(3):1123—1134

Zhao Z, Xu Q, Luo L, Wang CA, Li J, Wang L (2014) Effect of feed C/N ratio promoted bioflocs on water quality and production performance of bottom and filter feeder carp in minimum-water exchanged pond polyculture system. Aquaculture 434:442—448

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 International License (, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.


Aquaponics Food Production Systems


Stay up-to-date on the latest Aquaponic Tech


  • Our Team
  • Community
  • Press
  • Blog
  • Referral Program
  • Privacy Policy
  • Terms of Service

Copyright © 2019 Aquaponics AI. All rights reserved.