•
14 min readBenz Kotzen, Maurício Gustavo Coelho Emerenciano, Navid Moheimani, and Gavin M. Burnell
Abstract Whilst aquaponics may be considered in the mid-stage of development, there are a number of allied, novel methods of food production that are aligning alongside aquaponics and also which can be merged with aquaponics to deliver food efficiently and productively. These technologies include algaeponics, aeroponics, aeroaquaponics, maraponics, haloponics, biofloc technology and vertical aquaponics. Although some of these systems have undergone many years of trials and research, in most cases, much more scientific research is required to understand intrinsic processes within the systems, efficiency, design aspects, etc., apart from the capacity, capabilities and benefits of conjoining these systems with aquaponics.
Keywords Aquaponics alternatives · Algaeponics · Aeroponics · Aquaeroponics · Biofloc Technologies · Digeponics · Haloponics · Maraponics · Vermiponics · Vertical aquaponics
School of Design, University of Greenwich, London, UK
Santa Catarina State University (UDESC), Aquaculture Laboratory (LAQ), Laguna, SC, Brazil
CSIRO Agriculture and Food, Aquaculture Program, Bribie Island Research Centre, Bribie Island, QLD, Woorim, Australia
Algae R&D Centre Director, School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA, Australia
School of Biological, Earth and Environmental Sciences, University College Cork, Cork, Ireland
© The Author(s) 2019 301
S. Goddek et al. (eds.), Aquaponics Food Production Systems, https://doi.org/10.1007/978-3-030-15943-6_12
Addy MM, Kabir F, Zhang R, Lu Q, Deng X, Current D, Griffith R, Ma Y, Zhou W, Chen P, Ruan R (2017) Co-cultivation of microalgae in aquaponic systems. Bioresour Technol 245 (2017):27—34
Adhikary S (2012) Vermicompost, the story of organic gold: a review. Agricult Sci 3(7). https://doi. org/10.4236/as.2012.37110
Al-Hafedh YS, Alam A, Beltagi MS (2008) Food production and water conservation in a recirculating Aquaponic system in Saudi Arabia at different ratios of fish feed to plants. J World Aquacult Soc 39(4):510—520
Appelbaum S, Kotzen B (2016) Further investigations of Aquaponics using brackish water resources of the Negev Desert. Ecocycles Scientific J Eur Ecocycl Soc 2(2):26—35. ISSN 2416-2140 https://doi.org/10.19040/ecocycles.v2i2.53
Arnold J (2017) Greenhouse business: start-up costs, profits and labor, 19 April 2017. https://blog. brightagrotech.com/author/jason-arnold
Arnold SJ, Sellars MJ, Crocos PJ, Coman GJ (2006) An evaluation of stocking density on the intensive production of juvenile brown tiger shrimp (Penaeus esculentus). Aquaculture 256 (1):174—179
Avnimelech Y (2015) Biofloc technology: a practical guide book, 3rd edn. The World Aquaculture Society, Baton Rouge
Ayre JM, Moheimani NR, Borowitzka MA (2017) Growth of microalgae on undiluted anaerobic digestate of piggery effluent with high ammonium concentrations. Algal Res 24:218—226
Badgery-Parker J, James L (2010) Commercial greenhouse cucumber production. NSW Agriculture, Orange
Ballester ELC, Abreu PC, Cavalli RO, Emerenciano M, De Abreu L, Wasielesky W Jr (2010) Effect of practical diets with different protein levels on the performance of Farfantepenaeus paulensis juveniles nursed in a zero exchange suspended microbial flocs intensive system. Aquac Nutr 16 (2):163—172
Barbosa M (2017) Biofloc technology: do filtering elements might affects lettuce aquaponics production integrated with tilapia? A thesis presented at animal science postgraduate program, Santa Catarina State University (Degree of Master of Science), Chapecó, Santa Catarina, Brazil, December 2017
Borowitzka MA (1999) Commercial production of microalgae: ponds, tanks, tubes and fermenters. J Biotechnol 70(1—3):313—321
Borowitzka MA, Moheimani NR (2013) Open pond culture systems. In: Algae for biofuels and energy. Springer, Dordrecht
Brown EJ, Button DK (1979) Phosphate-limited growth kinetics of Selenastrum capricornutum (CHLOROPHYCEAE). J Phycol 15(3):305
Bugbee B (2017) Economics of LED lighting. In: Gupta D (ed) Light emitting diodes for agriculture — smart lighting. Springer, Singapore
Chisholm SW, Brand LE (1981) Persistence of cell division phasing in marine phytoplankton in continuous light after entrainment to light: dark cycles. J Exp Mar Biol Ecol 51(2—3):107—118
Clawson JM, Hoehn A, Stodieck LS, Todd P, Stoner RJ (2000) NASA — review of aeroponics — aeroponics for spaceflight plant growth. Aeroponics DIY. https://aeroponicsdiy.com/nasareview-of-aeroponics
Crab R, Chielens B, Wille M, Bossier P, Verstraete W (2010) The effect of different carbon sources on the nutritional value of biofloc, a feed for Macrobrachium rosenbergii postlarvae. Aquac Res 41:559—567
Croft MT, Lawrence AD, Raux-Deery E, Warren MJ, Smith AG (2005) Algae acquire vitamin B 12 through a symbiotic relationship with bacteria. Nature 438(7064):90
Delrue F, Álvarez-Díaz PD, Fon-Sing S, Fleury G, Sassi JF (2016) The environmental biorefinery: using microalgae to remediate wastewater, a win-win paradigm. Energies 9(3):132
Deppeler S, Petrou K, Schulz KG, Westwood K, Pearce I, McKinlay J, Davidson A (2018) Ocean acidification of a coastal Antarctic marine microbial community reveals a critical threshold for COsub2/sub tolerance in phytoplankton productivity. Biogeosciences 15(1):209—231
Droop MR (1973) Some thoughts on nutrient limitation in algae. J Phycol 9(3):264—272
Dufault RJ, Korkmaz A (2000) Potential of biosolids from shrimp aquaculture as a fertiliser in bell pepper production. Compost Sci Util 3:310—319
Dufault RJ, Korkmaz A, Ward B (2001) Potential of biosolids from shrimp aquaculture as a fertiliser for broccoli production. Compost Sci Util 9:107—114
Durigon EG, Sgnaulin T, Pinho SM, Brol J, Emerenciano MGC (2017) Bioflocos e seus benefícios nutricionais na pré-engorda de tilápias. Aquacult Brasil 8:50—54
Emerenciano M, Cuzon G, Goguenheim J, Gaxiola G (2011) Floc contribution on spawning performance of blue shrimp Litopenaeus stylirostris. Aquac Res 44(1):75—85
Emerenciano MGC, Ballester ELC, Cavalli RO, Wasielesky W (2012) Biofloc technology application as a food source in a limited water exchange nursery system for pink shrimp Farfantepenaeus brasiliensis (Latreille, 1817). Aquac Res 43(3):447—457
Emerenciano M, Gaxiola G, Cuzon G (2013) Biofloc technology (BFT): a review for aquaculture application and animal food industry. In: Biomass now-cultivation and utilization. InTech, Rijeka
Emerenciano MGC, Martínez-Córdova LR, Martínez-Porchas M, Miranda-Baeza A (2017) Biofloc technology (BFT): a tool for water quality management in aquaculture, water quality, In: Hlanganani Tutu (ed). InTech
Furtado PS, Poersch LH, Wasielesky W (2011) Effect of calcium hydroxide, carbonate and sodium bicarbonate on water quality and zootechnical performance of shrimp Litopenaeus vannamei reared in bio-flocs technology (BFT) systems. Aquaculture 321:130—135
Galloway JN, Dentener FJ, Capone DG, Boyer EW, Howarth RW, Seitzinger SP, Asner GP (2004) Nitrogen cycles: past, present, and future. Biogeochemistry 70(2):153—226
Gordon JM, Polle JE (2007) Ultra-high bioproductivity from algae. Appl Microbiol Biotechnol 76 (5):969—975
Gunning D, Maguire J, Burnell G (2016) The development of sustainable saltwater-based food production systems: a review of established and novel concepts. Water 8(12):598. https://doi. org/10.3390/w8120598
Gupta D (ed) (2017) Light emitting diodes for agriculture — smart lighting. Springer, Singapore
Hikosaka Y, Kanechi M, Uno Y (2014) A novel aeroponic technique using dry-fog spray fertigation to grow leaf lettuce (Lactuca sativa L. var. crispa) with water-saving hydroponics. Adv Hortic Sci 28(4):184—189
Joesting HM, Blaylock R, Biber P, Ray A (2016) The use of marine aquaculture solid waste for nursery of salt marsh plants Spartina alterniflora and Juncus roemerianus. Aquac Rep 3:108—114
Khandaker M, Kotzen B (2018) The potential for combining living wall and vertical farming systems with aquaponics with special emphasis on substrates. Aquacult Res 23 January 2018. https://doi.org/10.1111/are.13601
Kotzen B, Appelbaum S (2010) An investigation of aquaponics using brackish water resources in the Negev Desert. J Appl Aquacult 22(4):297—320. ISSN 1045-4438 (print), 1545-0805 (online). https://doi.org/10.1080/10454438.2010.527571
König B, Junge R, Bittsanszky A, Villarroel M, Komives T (2016) On the sustainability of aquaponics. Ecocycles 2(1):26—32
Kuhn DD, Boardman GD (2008) Use of microbial flocs generated from Tilapia effluent as a nutritional supplement for shrimp, Litopenaeus vannamei, in recirculating aquaculture systems. J World Aquacult Soc 39:72—82
Lakhiar IA, Gao J, Naz ST, Chandio FA, Buttar NA (2018) Modern plant cultivation technologies in agriculture under controlled environment: a review on aeroponics. J Plant Interact 13 (1):338—352. https://doi.org/10.1080/17429145.2018.1472308
Langton RW, Haines KC, Lyon RE (1977) Ammonia nitrogen produced by the bivalve mollusc Tapes japonica and its recovery by the red seaweed Hypnea musciformis in a tropical mariculture system. Helgol Wiss Meeresunters 30:217—229
Lenz GL, Durigon EG, Lapa KG, Emerenciano MGC (2017) Produção de alface (Lactuca sativa) em efluentes de um cultivo de tilápias mantidas em sistema BFT em baixa salinidade. Bol Inst Pesca 43:614—630
Martínez-Córdova LR, Emerenciano M, Miranda-Baeza A, Martínez-Porchas M (2015) Microbialbased systems for aquaculture of fish and shrimp: an updated review. Rev Aquac 7(2):131—148
Martínez-Córdova LR, Martínez-Porchas M, Emerenciano MG, Miranda-Baeza A, Gollas-Galván T (2017) From microbes to fish the next revolution in food production. Crit Rev Biotechnol 37:287—295
Megahed M (2010) The effect of microbial biofloc on water quality, survival and growth of the green tiger shrimp (Penaeus semisulcatus) fed with different crude protein levels. J Arab Aquacult Soc 5:119—142
Moheimani NR (2016) Tetraselmis suecica culture for COsub2/sub bioremediation of untreated flue gas from a coal-fired power station. J Appl Phycol 28(4):2139—2146
Moheimani NR, Borowitzka MA (2007) Limits to productivity of the alga Pleurochrysis carterae (Haptophyta) grown in outdoor raceway ponds. Biotechnol Bioeng 96(1):27—36
Moheimani NR, Parlevliet D (2013) Sustainable solar energy conversion to chemical and electrical energy. Renew Sust Energ Rev 27:494—504
Moheimani NR, Isdepsky A, Lisec J, Raes E, Borowitzka MA (2011) Coccolithophorid algae culture in closed photobioreactors. Biotechnol Bioeng 108(9):2078—2087
Moheimani NR, Webb JP, Borowitzka MA (2012) Bioremediation and other potential applications of coccolithophorid algae: a review. Algal Res 1(2):120—133
Moheimani NR, Parlevliet D, McHenry MP, Bahri PA, de Boer K (2015) Past, present and future of microalgae cultivation developments. In: Biomass and biofuels from microalgae. Springer, Cham, pp 1—18
Moheimani NR, Vadiveloo A, Ayre JM, Pluske JR (2018) Nutritional profile and in vitro digestibility of microalgae grown in anaerobically digested piggery effluent. Algal Res 35:362—369
Munoz R, Guieysse B (2006) Algal—bacterial processes for the treatment of hazardous contaminants: a review. Water Res 40(15):2799—2815
NASA Spinoff, Experiments Advance Gardening at Home and in Space, https://spinoff.nasa.gov/ Spinoff2008/ch_3.html
National Geographic, About the common earthworm, https://www.nationalgeographic.com/ani mals/invertebrates/c/common-earthworm
Neori A, Shpigel M, Ben-Ezra D (2000) A sustainable integrated system for culture of fish, seaweed, and abalone. Aquaculture 186:279—291
Nwoba EG, Ayre JM, Moheimani NR, Ubi BE, Ogbonna JC (2016) Growth comparison of microalgae in tubular photobioreactor and open pond for treating anaerobic digestion piggery effluent. Algal Res 17:268—276
Nwoba EG, Moheimani NR, Ubi BE, Ogbonna JC, Vadiveloo A, Pluske JR, Huisman JM (2017) Macroalgae culture to treat anaerobic digestion piggery effluent (ADPE). Bioresour Technol 227:15—23
Oswald WJ (1988) Role of microalgae in liquid waste treatment and reclamation. In: Lembi CA, Robert Waaland J (eds) Algae and human affairs. Sponsored by the Phycological Society of America, Inc
Oswald WJ, Gotaas HB (1957) Photosynthesis in sewage treatment. Trans Am Soc Civ Eng 122 (1):73—105
Park JBK, Craggs RJ ( 2010) Wastewater treatment and algal production in high rate algal ponds with carbon dioxide addition. Water Sci Technol 61(3):633—639
Parkin GF, Owen WF (1986) Fundamentals of anaerobic digestion of wastewater sludges. J Environ Eng 112(5):867—920
Pinheiro I, Arantes R, Santo CME, Seiffert WQ (2017) Production of the halophyte Sarcocornia ambigua and Pacific white shrimp in an aquaponic system with biofloc technology. Ecol Eng 100:261—267
Pinho SM (2018) Tilapia nursery in aquaponics systems using bioflocs technology. A thesis presented at aquaculture Centre of Sao Paulo State University. Degree of Master of Science, Jaboticabal, Sao Paulo, Brazil, February 2018
Pinho SM, Molinari D, De Mello GL, Fitzsimmons KM, Emerenciano MGC (2017) Effluent from a biofloc technology (BFT) Tilapia culture on the aquaponics production of differente lettuce varieties. Ecol Eng 103:146—153
Poleo G, Aranbarrio JV, Mendoza L, Romero O (2011) Cultivo de cachama blanca en altas densidades y en dos sistemas cerrados. Pesq Agrop Brasileira 46(4):429—437
Poli MA, Schveitzer R, Nuñerr APO (2015) The use of biofloc technology in a South American catfish (Rhamdia quelen) hatchery: effect of suspended solids in the performance of larvae. Aquac Eng 66:17—21
Rahman SSA (2010) Effluent water characterization of intensive Tilapia culture units and its application in an integrated lettuce aquaponic production facility. A thesis submitted to the graduate faculty. Auburn University, Degree of Master of Science, Auburn Alabama, December 13 2010
Rakocy JE (2012) Aquaponics — integrating fish and plant culture. In: Tidwell JH (ed) Aquaculture Production Systems, 1st edn. Wiley-Blackwell, Oxford, pp 343—386
Ray AJ, Lewis BL, Browdy CL, Leffler JW (2010) Suspended solids removal to improve shrimp (Litopenaeus vannamei) production and an evaluation of a plant-based feed in minimalexchange, superintensive culture systems. Aquaculture 299:89—98
Richmond A, Becker EW (1986) Technological aspects of mass cultivation, a general outline. In: CRC handbook of microalgal mass culture, CRC Press, Boca Raton, pp 245—263
Rocha AF, Biazzetti Filho ML, Stech MR, Silva RP (2017) Lettuce production in aquaponic and biofloc systems with silver catfish Rhamdia quelen. Bol Inst Pesca 44:64—73
Schoumans OF, Chardon WJ, Bechmann ME, Gascuel-Odoux C, Hofman G, Kronvang B et al (2014) Mitigation options to reduce phosphorus losses from the agricultural sector and improve surface water quality: a review. Sci Total Environ 468:1255—1266
Sgnaulin T, Mello GL, Thomas MC, Esquivel-Garcia JR, Oca GARM, Emerenciano MGC (2018) Biofloc technology (BFT): an alternative aquaculture system for Piracanjuba Brycon orbignyanus? Aquaculture 485:119—123
Sharpley AN, Kleinman PJ, Heathwaite AL, Gburek WJ, Folmar GJ, Schmidt JP (2008) Phosphorus loss from an agricultural watershed as a function of storm size. J Environ Qual 37 (2):362—368
Shifrin NS, Chisholm SW (1981) Phytoplankton lipids: interspecific differences and effects of nitrate, silicate and light-dark cycles. J Phycol 17(4):374—384
Smith VH (1983) Low nitrogen to phosphorus ratios favor dominance by blue-green algae in lake phytoplankton. Science 221(4611):669—671
Stoknes K, Scholwin F, Krzesiński W, Wojciechowska E, Jasińska A (2016) Efficiency of a novel "food to waste to food" system including anaerobic digestion of food waste and cultivation of vegetables on digestate in a bubble-insulated greenhouse. Waste Manag 56:466—476. https:// doi.org/10.1016/j.wasman.2016.06.027
Stokstad E (2010) Down on the shrimp farm. Science 328:1504—1505
Storey, A., 2015, Vertical farming costs and the math behind them, posted 6 October 2015 https:// blog.brightagrotech.com/vertical-farming-costs-and-the-math-behind-them/
Tibbitts TW, Cao W, and Wheeler RM (1994) Growth of potatoes for CELSS. NASA Contractor Report 177646
Touliatos D, Dodd IC, McAinsh M (2016) Vertical farming increases lettuce yield per unit areacompared to conventional horizontal hydroponics. Food and Energy Security 5(3):184—191
Turcios AE, Papenbrock J (2014) Sustainable treatment of aquaculture effluents — what can we learn for the past for the future? Sustainability 6:836—856
Virsile A, Olle M, Duchovskis P (2017) LED lighting in horticulture. In: Gupta D (ed) Light emitting diodes for agriculture — smart lighting. Springer, Singapore
Waller U, Buhmann AK, Ernst A, Hanke V, Kulakowski A, Wecker B, Orellana J, Papenbrock J (2015) Integrated multi-trophic aquaculture in a zero-exchange recirculation aquaculture system for marine fish and hydroponic halophyte production. Aquac Int 23:1473—1489
Weathers PJ, Zobel RW (1992) 1992, Aeroponics for the culture of organisms. Tissues Cells Biotechnol Adv 10(1):93—115
Wijihastuti RS, Moheimani NR, Bahri PA, Cosgrove JJ, Watanabe MM (2017) Growth and photosynthetic activity of Botryococcus braunii biofilms. J Appl Phycol 29(3):1123—1134
Zhao Z, Xu Q, Luo L, Wang CA, Li J, Wang L (2014) Effect of feed C/N ratio promoted bioflocs on water quality and production performance of bottom and filter feeder carp in minimum-water exchanged pond polyculture system. Aquaculture 434:442—448
Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence and indicate if changes were made.
The images or other third party material in this chapter are included in the chapter's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.