The Marketplace is now widely available! Install insights today.
Download AppBlogFeaturesPricingSupportSign In

2.5 Water Resources

2 years ago

5 min read

2.5.1 Predictions

Water Foodprint

Fig. 2.1 Water footprint (L per kg). Fish in RAS systems use the least water of any food production system

In addition to requiring fertilizer applications, modern intensive agricultural practices also place high demands on water resources. Among biochemical flows (Fig. 2.1), water scarcity is now believed to be one of the most important factors constraining food production (Hoekstra et al. 2012; Porkka et al. 2016). Projected global population increases and shifts in terrestrial water availability due to climate change, demand more efficient use of water in agriculture. As noted previously, by 2050, aggregate agriculture production will need to produce 60% more food globally (Alexandratos and Bruinsma 2012), with an estimated 100% more in developing countries, based on population growth and rising expectations for standards of living (Alexandratos and Bruinsma 2012; WHO 2015). Famine in some regions of the world, as well as malnutrition and hidden hunger, indicates that the balance between food demand and availability has already reached critical levels, and that food and water security are directly linked (McNeill et al. 2017). Climate change predictions suggest reduced freshwater availability, and a corresponding decrease in agricultural yields by the end of the twenty-first century (Misra 2014).

The agriculture sector currently accounts for roughly 70% of the freshwater use worldwide, and the withdrawal rate even exceeds 90% in most of the world's leastdeveloped countries. Water scarcity will increase in the next 25 years due to expected population growth (Connor et al. 2017; Esch et al. 2017), with the latest modelling forecasting declining water availability in the near future for nearly all countries (Distefano and Kelly 2017). The UN predicts that the pursuit of business-as-usual practices will result in a global water deficit of 40% by 2030 (Water 2015). In this respect, as groundwater supplies for irrigation are depleted or contaminated, and arid regions experience more drought and water shortages due to climate change, water for agricultural production will become increasingly valuable (Ehrlich and Harte 2015a). Increasing scarcity of water resources compromises not only water security for human consumption but also global food production (McNeill et al. 2017). Given that water scarcity is expected even in areas that currently have relatively sufficient water resources, it is important to develop agricultural techniques with low water input requirements, and to improve ecological management of wastewater through better reuse (FAO 2015a).

The UN World Water Development Report for 2017 (Connor et al. 2017) focuses on wastewater as an untapped source of energy, nutrients and other useful by-products, with implications not only for human and environmental health but also for food and energy security as well as climate change mitigation. This report calls for appropriate and affordable technologies, along with legal and regulatory frameworks, financing mechanisms and increased social acceptability of wastewater treatment, with the goal of achieving water reuse within a circular economy. The report also points to a 2016 World Economic Forum report that lists the water crisis as the global risk of highest concern in the next 10 years.

The concept of a water footprint as a measure of humans' use of freshwater resources has been put forwards in order to inform policy development on water use. A water footprint has three components: (1) blue water, which comprises the surface and groundwater consumed while making products or lost through evaporation, (2) green water that is rainwater used especially in crop production and (3) grey water, which is water that is polluted but still within existing water quality standards (Hoekstra and Mekonnen 2012). These authors mapped water footprints of countries worldwide and found that agricultural production accounts for 92% of global freshwater use, and industrial production uses 4.4% of the total, while domestic water only 3.6%. This raises concerns about water availability and has resulted in public education efforts aimed at raising awareness about the amounts of water required to produce various types of food, as well as national vulnerabilities, especially in water-scarce countries in North Africa and the Middle East.

2.5.2 Aquaponics and Water Conservation

The economic concept of comparative productivity measures the relative amount of a resource needed to produce a unit of goods or services. Efficiency is generally construed to be higher when the requirement for resource input is lower per unit of goods and services. However, when water-use efficiency is examined in an environmental context, water quality also needs to be taken into account, because maintaining or enhancing water quality also enhances productivity (Hamdy 2007).

The growing problem of water scarcity demands improvements in water-use efficiencies especially in arid and semiarid regions, where availability of water for agriculture, and water quality of discharge, are critical factors in food production. In these regions, recirculation of water in aquaponic units can achieve remarkable water re-use efficiency of 95—99% (Dalsgaard et al. 2013). Water demand is also less than 100 L/kg of fish harvested, and water quality is maintained within the system for production of crops (Goddek et al. 2015). Obviously, such systems must be constructed and operated to minimize water losses; they must also optimize their ratios of fish water to plants, as this ratio is very important in maximizing water reuse efficiency and ensuring maximal nutrient recycling. Modelling algorithms and technical solutions are being developed to integrate improvements in individual units, and to better understand how to effectively and efficiently manage water (Vilbergsson et al. 2016). Further information is provided in Chaps. 9 and 11.

In light of soil, water and nutrient requirements, the water footprint of aquaponic systems is considerably better than traditional agriculture, where water quality and demand, along with availability of arable land, costs of fertilizers and irrigation are all constraints to expansion (Fig. 2.1).

Efficiencies of Production

Fig. 2.2 Feed conversion ratios (FCRs) based as kg of feed per live weight and kg of feed for edible portion. Only insects, which are eaten whole in some parts of the world, have a better FCR than fish

Aquaponics Food Production Systems


Stay up-to-date on the latest Aquaponic Tech


  • Our Team
  • Community
  • Press
  • Blog
  • Referral Program
  • Privacy Policy
  • Terms of Service

Copyright © 2019 Aquaponics AI. All rights reserved.